Seal Analysis for the Ares-I Upper Stage Fuel Tank Manhole Covers

Dawn R. Phillips

NASA Marshall Space Flight Center

Robert J. Wingate

NASA Marshall Space Flight Center

Objective

Assess the feasibility that the Naflex seal used with the Space Shuttle External Tank manhole covers can be used for the Ares-I design

Outline

- Problem description
- Background
- Approach for Upper Stage analyses
- Analyses and results
- Summary

Ares-I Upper Stage LH2 Tank

Naflex Pressure-Assisted Seal

Background

- Naflex seals have long history of use in launch vehicle components, including Saturn stages and Space Shuttle External Tank
- Ares-I Upper Stage tank pressures are higher than ET pressures, requiring performance verification of heritage seal design in new manhole cover configuration

Approach for Upper Stage Analyses

Heritage ET analyses reviewed for potential application to Upper Stage

ET Seal Test

Test Set-Up

Deflection Gauge Locations

ET Seal Test

3D Symmetric Wedge of Naflex Seal

ET Seal Test Finite Element Model

Part	Material	
MHC	Aluminum 2219	
Seal	Inconel 718	
Bolt	A286 Stainless Steel	
Fixture	Generic Stiff	

ET Seal Test Finite Element Model

Bolted Joint in ET MHC

${}^{3}6SLGHU' \square \&RQVWUDLQWV$

ET Seal Test Finite Element Model

Contact

ET Seal Test-Analysis Correlation

ET Seal Test-Analysis Correlation

Initial
Modeling

Assumptions

Washer	Insert	Friction	Prediction
3 Rings	Full	0.1	0.88
2 Rings	Full	0.1	0.98
1 Ring	Full	0.1	1.15
3 Rings	Half	0.1	0.91
3 Rings	Quarter	0.1	0.93
3 Rings	Full	0.04	0.88
3 Rings	Full	0.2	0.89
2 Rings	Half	0.1	1.02

Upper Stage LH2 Tank MHC Seal Joint Analyses

Upper Stage Seal Joint Finite Element Model

Upper Stage Seal Joint Results

- Δ_z / Allowable = 0.39 (at Room Temp.)
- Preliminary results for cryogenic temperature indicate that joint opening is also within allowable.

Upper Stage Seal Joint Results

 Δ_z / Allowable = 0.39 (at Room Temp.)

Friction

- Negligible effect on joint opening
- Δ_z / Allowable = 0.39 (at Room Temp.)

Summary

Analysis Observations

- 3D finite element modeling correlates well with test data
- Demonstrated effects of modeling assumptions

Wedge Model of MHC

Wedge Model of Dome-Cover Flange

